miércoles, 12 de diciembre de 2012


ELECTROIMAN




Un electroimán es un tipo particular de imán en el que el campo magnético se produce mediante el flujo de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente. Tal efecto se consigue mediante el contacto de dos metales; uno en estado neutro y otro formado por un cable enrollado sobre el primero y atravesado por dicha corriente.
El tipo más simple de electroimán es un simple trozo de alambre enrollado formando una bobina. Una bobina con forma de tubo recto de dos formas (parecido a un tornillo) se llama solenoide, y cuando además se curva de forma que los extremos coincidan se denomina toroide. Pueden producirse campos magnéticos mucho más fuertes si se sitúa un «núcleo» de material
paramagnético o ferromagnético (normalmente hierro dulce) dentro de la bobina.

Al someter un material ferromagnético a un campo magnético intenso, los dominios tienden a alinearse con éste, de forma que aquellos dominios en los que los dipolos están orientados con el mismo sentido y dirección que el campo magnético inductor aumentan su tamaño. Este aumento de tamaño se explica por las características de las paredes de Bloch, que avanzan en dirección a los dominios cuya dirección de los dipolos no coincide; dando lugar a un monodominio. Al eliminar el campo, el dominio permanece durante cierto tiempo. El núcleo concentra el campo magnético, que puede entonces ser mucho más fuerte que el de la propia bobina y dependiendo de la histéresis del material, el campo permanecerá más o menos tiempo despues de cesar la corriente del electroimán.

La histéresis es la tendencia de un material a conservar una de sus propiedades, en ausencia del estímulo que la ha generado. Se encuentra, por ejemplo, histéresis magnética si al magnetizar un ferromagneto éste mantiene la señal magnética tras retirar el campo magnético que la ha inducido. También se puede encontrar el fenómeno en otros comportamientos electromagnéticos, o los elásticos.

Hay muchos materiales cristalinos que presentan ferromagnetismo como el hierro, cobalto, níquel, gadolinio, disprosio, así como compuestos de varios elementos tales como: MnAs,
MnBi, MnSb, CrO2, MnOFe2O3, FeOFe2O3, NiOFe23, CuOFe2O3, MgOFe23, EuO, Y3Fe5O12.

Los campos magnéticos generados por bobinas, de cable se orientan según la regla de la mano derecha.
Si los dedos de la mano derecha se cierran en torno a la dirección de la corriente que circula por la bobina, el pulgar indica la dirección del campo dentro de la misma. El lado del imán del que salen las líneas del campo se define como «polo norte».

Además, dentro de la bobina se crearán corrientes inducidas cuando éstas están sometidas a un flujo variable. Estas corrientes son llamadas corrientes de Foucault y en general, son indeseables, puesto que calentarán el núcleo y aparecerá una pérdida de potencia en forma de calor.


Historia del electroimán:

El primer electroimán en el mundo, que William Sturgeon exhibió el 23 de mayo de 1825 en la Sociedad Británica de Oficios, era una barra laqueada de hierro de 30 cm de largo y 1,3 cm de diámetro, doblada en forma de herradura y cubierta de una capa de alambre de cobre no aislado. Se alimentaba de una fuente química.


Pesaba 200 gr, sosteniendo en suspensión 3600 gr. Era mucho más potente que los imanes naturales de igual peso por lo que fue un logro admirable para aquellos tiempos.

Joule (en cuyo honor se denominó la unidad de energía), discípulo de Sturgeon, haciendo experimentos con el primer imán de su maestro, logró aumentar la fuerza de sustentación hasta 20 kg. Ese acontecimiento tuvo lugar en el mismo año: 1825.

Sturgeon no estaba dispuesto a perder la primacía en la explotación de su invento y comenzó una carrera por la fabricación del electroimán más potente. En 1830, por su encargo, se fabricó un electroimán capaz de levantar 550 kg.

Para aquel tiempo apareció en ultramar un adversario muy serio de Sturgeon. En abril de 1831, Henry, profesor de la Universidad de Yale (en cuyo honor se denominó la unidad de inductancia), construyó un electroimán que pesaba 300 kg y levantaba 1 t, aproximadamente.

Todos aquellos imanes, según su diseño, eran barras en forma de herradura con alambre devanado. En noviembre de 1840 Joule creó un imán de construcción propia: un tubo de acero de paredes gruesas cortado a lo largo del eje por debajo del diámetro. La fuerza de sustentación de ese imán resultó muy grande: siendo el propio imán bastante compacto, levantaba

Magnetismo

 
 
 
Líneas de fuerza magnéticas de un imán de barra, producidas por limaduras de hierro sobre papel.
El magnetismo es un fenómeno físico por el que los objetos ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influidos, de mayor o menor forma, por la presencia de un campo magnético.
El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz

Campos y fuerzas magnéticas
El fenómeno del magnetismo es ejercido por un campo magnético, por ejemplo, una corriente eléctrica o un dipolo magnético crea un campo magnético, éste al girar imparte una fuerza magnética a otras partículas que están en el campo.
Para una aproximación excelente (pero ignorando algunos efectos cuánticos, véase electrodinámica cuántica) las ecuaciones de Maxwell (que simplifican la ley de Biot-Savart en el caso de corriente constante) describen el origen y el comportamiento de los campos que gobiernan esas fuerzas. Por lo tanto el magnetismo se observa siempre que partículas cargadas eléctricamente están en movimiento. Por ejemplo, del movimiento de electrones en una corriente eléctrica o en casos del movimiento orbital de los electrones alrededor del núcleo atómico. Estas también aparecen de un dipolo magnético intrínseco que aparece de los efectos cuánticos, por ejemplo del spin de la mecánica cuántica.
La misma situación que crea campos magnéticos (carga en movimiento en una corriente o en un átomo y dipolos magnéticos intrínsecos) son también situaciones en que el campo magnético causa sus efectos creando una fuerza. Cuando una partícula cargada se mueve a través de un campo magnético B, se ejerce una fuerza F dado por el producto cruz:
 
donde q\, es la carga eléctrica de la partícula, \vec{v} \, es el vector velocidad de la partícula y es el campo magnético. Debido a que esto es un producto cruz, la fuerza es perpendicular al movimiento de la partícula y al campo magnético.
La fuerza magnética no realiza trabajo mecánico en la partícula, cambia la dirección del movimiento de ésta, pero esto no causa su aumento o disminución de la velocidad. La magnitud de la fuerza es : donde \theta \, es el ángulo entre los vectores \vec{v} \, y .`
.